36 research outputs found

    Target Point Manipulation Inside a Deformable Object

    Get PDF

    Optimized multiplexer design and simulation using quantum dot-cellular automata

    Get PDF
    Recent trends in nano technological field are the exploitation of quantum dot-cellular automata (QCA) as a substitute in advance to existing transistor based CMOS technology to fabricate nano-circuit. Ultra low heat dissipation, faster clocking and high device density make the QCA as a raising research area in nanotechnological field to suppress the FET based circuit. This paper illustrates a simple and basic method to design QCA based 2:1 multiplexer at nanoscale. The proposed 2:1 multiplexer is compared with the previously designed 2:1 multiplexer in account of circuit density, clock zone numbers, amount of QCA cell used to design the circuit and the density consumed by all QCA cell over total density of the circuit is depicted. This comparative analysis has approved the efficiency of the proposed design. The circuit is implemented and proved using QCA designer-2.0.3

    Robotic control of deformable continua and objects therein

    Get PDF

    QCA based error detection circuit for nano communication network

    Get PDF
    This paper outlines low power nano-scale circuit design for even parity generator as well as even parity checker circuit using quantum-dot cellular automata (QCA). The proposed even parity generator and even parity checker is achieved by using a new layout of XOR gate. This new XOR gate is much denser and faster than existing ones in the state of the art. The proposed parity generator has out shined the existing design by reducing the cell count as 10proposed parity checker has also out shined the existing design with an improvement in cell count as 17.94circuits are denser and faster than existing one. Nanocommunication architecture with the proposed circuits is also demonstrated. The bit-error coverage by the proposed method is described. Besides, the defects in the circuits are explored to facilitate guide to proper implementation. The tests vectors are proposed to identify the defects in the designs and the defect coverage by those test vector are also described. The estimation of dissipated energy by the layouts established the very low energy dissipation nature of the designs. Different parameters like logic gate, density and latency are utilized to evaluate the designs that demonstrate the faster processing speed at nano-scale

    Security Analysis With Novel Image Masking Based Quantum-Dot Cellular Automata Information Security Model

    Get PDF
    Mask of an image is generated in this article using Quantum Dot Cellular Automata. An encoder circuit is drafted to produce the Mask Image. This encoder can function as a decoder as well. A mask image is used to retrieve the original image,although the secret key remains unknown. Power dissipation calculations are performed to comprehend the proposed circuit consumes lower power dissipation at nano-scale level design.The security of the proposed circuit is guaranteed by validating with different security standards. The design paradigm matches the theoretical values, which authorizes the accurateness of the proposed circuit. The Structural Similarity (SSIM) index of the retrieved image is calculated to establish the degradation of the image quality is minimal. The stuck-at-fault analysis is performed to prove the stability of the circuit

    Optimized multiplexer design and simulation using quantum dot-cellular automata

    Get PDF
    802-811Recent trends in nano technological field are the exploitation of quantum dot-cellular automata (QCA) as a substitute in advance to existing transistor based CMOS technology to fabricate nano-circuit. Ultra low heat dissipation, faster clocking and high device density make the QCA as a raising research area in nanotechnological field to suppress the FET based circuit. This paper illustrates a simple and basic method to design QCA based 2:1 multiplexer at nanoscale. The proposed 2:1 multiplexer is compared with the previously designed 2:1 multiplexer in account of circuit density, clock zone numbers, amount of QCA cell used to design the circuit and the density consumed by all QCA cell over total density of the circuit is depicted. This comparative analysis has approved the efficiency of the proposed design. The circuit is implemented and proved using QCA designer-2.0.3

    Staining of Platyhelminthes by herbal dyes: An eco-friendly technique for the taxonomist

    No full text
    Aim: An environment compatible technique to stain Platyhelminthes, Fasciola gigantica, Gastrothylax crumenifer, Taenia solium, and Moniezia expansa using aqueous and alcoholic extract of sugar beet (Beta vulgaris), China rose (Hibiscus rosasinensis), and red rose (Rosa hybrida) were described to minimized the deleterious effects of the synthetic dyes. Materials and Methods: Aqueous/ethanolic extracts of roses were extracted from the flowers while red beet was extracted from the roots. Results: Stained helminthes acquired a comparable level of pigmentation with the distinction of their internal structure in these natural dyes. The flukes (liver and rumen) internal structure, oral and ventral/posterior sucker, cirrus sac, gravid uterus, testes, ovary, and vitallaria were appeared pink color in aqueous and alcoholic extract of either China or red rose and yellow to brown color in sugar beet stain. The interior of the proglottid of T. solium and M. expansa took yellow to brown color with good contrast in sugar beet stain and of pink to pink-red in China and red rose stain. Conclusion: The extract of roses (red rose followed by China rose) followed by red beet possess the potential to replace the conventional stains in the taxonomic study of Platyhelminthes parasites

    Plastination of macroparasites: An eco-friendly method of long-term preservation

    No full text
    Aim: Preservation of macroparasites by infiltrating the polymer in the tissues can defy the inherited shortcoming of classical wet preservation method. Materials and Methods: Preservation was done by infiltrating the melamine alone or with xylene (MX)/chloroform (MC)/turpentine oil (MT) in 1:1 and hardener (MH) in 9:1 ratio in the tissues of the gross specimen of the animal parasites. Results: The plastinated models withstand the process of microbial decomposition, and remain intact in the environmental conditions. The polymer mixture resists the entry of the water molecule, and model dried just after taking out it from the water tank. Overall, the plastinated parasites were dry, non-sticky, glossy, odorless, chemical free, and harmless, to some extent flexible, with detectable morphological structure, and retain their natural form but lost their natural color. Full marks were assigned to the degree of dryness, non-stickiness, and odorlessness to the model plastinated in different solutions on a five-point scale. For flexibility, the score was 1.2, 2.2, and 2.4 for the plastinated model in melamine/MH, MX/MC, and MT solutions, respectively. The average score of glossiness was 4.6 and 5 for the specimen plastinated in melamine/MH and MX/MC/MT solutions, respectively. The degree of dryness, glossiness, stickiness, and flexibility varies non-significantly, with the polymer mixtures used. Conclusion: The prepared model can be used to educate the students/general mass population
    corecore